
Building a Modern
Game Engine

E T S U

[T y p e t h e c o m p a n y a d d r e s s]

[T y p e t h e p h o n e n u m b e r]

[T y p e t h e f a x n u m b e r]

[P i c k t h e d a t e]

Joshua Carr

The design of a modern game engine has changed

significantly from what it was ten years ago. The Warzone

3D Engine is a study in the graphics rendering techniques

used in many of today’s top game engines. This paper

presents these techniques, considers the advantages and

disadvantages of each, and discusses the challenges

involved in their implementation.

Building a Modern Game Engine

Joshua Carr

The design of the modern game engine has changed significantly from what it was ten

years ago. Game engines are now being built to depend on today’s more advanced processing

technologies to meet the expectations of modern gamers. As a result, the design of the modern

game engine has changed to support a more robust set of graphics rendering features. This

paper presents some of these features and the techniques involved in integrating them into a

game engine. The advantages and disadvantages of each are discussed, as well as the

challenges involved in their implementations.

The Warzone 3D Engine is a small engine designed to explore many of the features of

today’s top game engines. As the engine is still under development, this paper will focus on its

graphics rendering capabilities. The Warzone Engine’s main design goal is to support fully

dynamic environments without the need to prebuild lighting. Traditionally, game engines have

rendered dynamic lights by first determining the geometry they affect, then drawing that

geometry and additively blending the result of the lighting equation (usually Phong and

Lambert) with the framebuffer. This means that the scene’s geometry has to be redrawn at

least once for each dynamic light that affects it, and twice for shadow casting lights, which is

why traditional game engines use lightmaps to prebuild most of the lighting for a scene. This

method is referred to as “forward shading.”

With recent advances in graphics hardware and much more VRAM than was previously

available, it is now possible to rasterize games in much different ways. These methods are

called “deferred rendering.” There are two main types of deferred rendering: deferred shading

and deferred lighting. Deferred shading draws the scene’s geometry only once to an array of

framebuffers (referred to as the geometry buffer, or G-buffer). The geometry’s surface and

material properties are encoded into the RGBA components of the G-buffer textures. Such

properties include the surface normal, world-space position, diffuse and specular colors and

velocity. The G-buffer is then used in a series of post processing shaders that access these

properties to render a virtually unlimited number of effects, including dynamic light sources. By

storing the relevant surface data needed for subsequent effects, deferred shading has the

advantage that geometry need only be rendered once at the beginning of each frame.

However, managing the G-buffer can cost a great deal of VRAM, especially when 64-bit

framebuffers are used.

Deferred lighting makes a trade between VRAM usage and geometry batching. In a

deferred lighting engine, such as Warzone, only the surface normal and depth are needed,

which greatly reduces the size of the G-buffer. Lighting is performed as a post process just as in

deferred shading, and the diffuse and specular components are additively blended together

into an off-screen framebuffer. Once the lighting is complete, a second geometry rendering

Building a Modern Game Engine

Joshua Carr

pass is performed. During this final shading pass, the result from the lighting passes is simply

sampled from a texture and added to the surface’s color.

